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Abstract—Multi-threaded programs often exhibit erroneous
behaviours due to unintended interactions among threads. Those
bugs are often difficult to find because they typically manifest
under very specific thread schedules. The traditional random-
ized algorithms increase the probability of exploring infrequent
interleavings using randomized scheduling and improve the
chances of detecting concurrency defects. However, they may
generate many redundant trials, especially for those hard-to-
detect defects, and thus their performance is often not stable.
In this work, we propose an adaptive randomized scheduling
algorithm (ARS), which adaptively explores the search space
and detects concurrency bugs more efficiently with less efforts.
We compare ARS with random searching and the state-of-the-
art maximal causality reduction method on 27 concurrent Java
programs. The evaluation results show that ARS shows a more
stable performance in terms of effectiveness in detecting multi-
threaded bugs. Particularly, ARS shows a good potential in
detecting hard-to-expose bugs.

Index Terms—concurrency bugs, bug detection, concurrency
bug pattern, adaptive random testing

I. INTRODUCTION

With the development of multi-core processors, multi-

threaded programming is more and more widely adopted

nowadays. Although the efficiency brought by multi-threading

is appreciated, it may also introduce concurrency bugs. Con-

currency bugs are bugs which may only manifest with certain

scheduling, i.e., they are heisenbugs which may only be

observed if we execute the same program with the same input

multiple times. Concurrency bugs are notoriously difficult to

detect due to the non-determinism nature.

To expose multi-threaded bugs swiftly from the astronomi-

cally large number of possible schedules, researchers have pro-

posed many concurrency bug detectors, which can be roughly

classified into three categories, i.e., static detectors, dynamic

detectors and hybrid detectors. Static detectors [1] analyse the

concurrent programs by leveraging program structures such

as control-flow graphs, which are built without executing the

program. Static detectors explore an over-approximated state

space and thus are able to detect the concurrency bugs in

obscure code paths which can be difficult to reach with con-

crete executions. However, static detectors tend to report many

false positives, which require manual effort to identify actual

bugs. Contrary to static techniques, dynamic detectors [2]–[6]
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expose concurrency bugs, by monitoring memory accesses and

synchronization operations at runtime. Dynamic detectors have

a precise knowledge about the runtime behavior of the program

and thus avoids the problem of false positives. However they

can only observe a small subset of program states and leave

many bugs undetected. To alleviate the limitations of static and

dynamic techniques, researchers proposed to combine static

and dynamic analysis to leverage the strength of both. Hybrid

detectors [7]–[9] obtain program state information through

static analysis to aid the dynamic analysis. As a result, fewer

thread schedules are explored, which make the detectors more

efficient.

One representative hybrid detector [7] is to combine model

checking with static analysis. To solve the state space explo-

sion problem, state space reduction methods, such as partial

order reduction (POR) [10], have been explored. Previous

researches [11] have shown that POR can reduce the redundant

schedules to some extent. However, the reduction effectiveness

of POR is limited by happens-before relations. To alleviate

this problem, Huang [12] adopted maximal causality reduc-

tion (MCR) for model checking. It overcomes the happens-

before problems by exploring the maximal causality between

schedules to achieve the maximal reduction. However MCR

requires constraint solving. Contrary to reducing the redundant

schedules, the schedule bounding [13] techniques reduce the

state space effectively by limiting the number of context

switches between different threads. But the schedule bounding

technique may miss bugs which only manifest with more-than-

bound of number of context switches.

One of the most widely adopted dynamic detectors, the

simple randomized detector [2], [3], [14] is proposed based on

the observation that systems usually follow similar schedules

rather than random schedules. Therefore, researchers attempt

to control thread scheduling [15] by picking a random thread

to execute at every synchronization. However, the random

scheduling samples all possible thread interleavings randomly

without considering the differences (in terms of likelihood of

leading to bugs between different schedules).

To solve these problems, we propose a novel algorithm

called Adaptive Randomized Scheduling Algorithm (ARS) to

improve the performance of existing randomized detectors.

ARS is inspired by adaptive random testing [16]. The as-

sumption of ARS is that the more a trace deviates from the
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passed/successful traces, the more likely that it leads to a

bug. Unlike the simple randomized algorithm, ARS picks N
farthest traces from the known passed trace at each scheduling

point. N is a threshold set to control the “width” of the search

space at each step. In this way, we guide the search to favour

the traces that are likely to lead to bugs (i.e., the farthest to

passed traces). ARS is designed to leverage the advantages of

both random execution and guided exploration. Compared to

dynamic detecting techniques, such as random testing, ARS

is more effective, especially in detecting hard-to-expose bugs.

Compared to static detecting techniques such as MCR, ARS

is more efficient.

One central question in our approach is how to define the

distance between traces. In this work, we propose to measure

the distance by contrasting the memory-access patterns [17]

in two traces. The reason is that it has been shown that

memory-access patterns are often correlated to the root cause

of multi-threaded bugs [2], [5]. Our work focuses on detecting

non-deadlock defects in multi-threaded programs, which are

reported to count for more than 65% [18] of all concurrency

defects.

Our contribution is summarized as follows:

• We propose a novel concurrency bug detection algorithm

called ARS, which adopts adaptive search guided by

distance metrics to efficiently explore the state space of

concurrent programs, with the purpose of exposing bugs

efficiently.

• We propose to use memory-access patterns to measure

the distance between traces, and subsequently to guide

the searching procedure effectively.

• We implement ARS based on Java Pathfinder (JPF), our

tool is made available online [19].

• We conduct experiments on 27 concurrent programs,

to compare ARS with state-of-the-art concurrency bug

detection algorithms, such as MCR. Results show that

ARS is more stable on the effectiveness of detecting

concurrency bugs. ARS also shows a good potential in

detecting hard-to-expose bugs.

The rest of this paper is organized as follows. The prelimi-

nary is introduced in Section II. Section III uses a motivating

example to illustrate the main idea of ARS. The details of

ARS algorithm as well as our implementation are described

in section IV. In Section V, we report our experiment setting

and results. In Section VI, we discuss the threats to validity.

Section VII discusses the related work and Section VIII

concludes the paper.

II. PRELIMINARY

A. Memory-Access Patterns

It is well known that concurrency bugs are difficult to

reproduce due to unexpected schedules, and the randomness in

scheduling brings difficulties in detecting and locating concur-

rency bugs. In recent research, memory-access patterns [17],

[20] are proposed to capture the reasons of concurrency

defects. It has been reported that memory-access patterns are

TABLE I
THE GENERIC MEMORY-ACCESS PATTERNS [17]

ID Memory-Access Pattern

1 (ta, si, {x}, ∅), (tb, sj , ∅, {x})
2 (ta, si, ∅, {x}), (tb, sj , {x}, ∅)
3 (ta, si, ∅, {x}), (tb, sj , ∅, {x})
4 (ta, si, {x}, ∅), (tb, sj , ∅, {x}), (ta, sk, {x}, ∅)
5 (ta, si, ∅, {x}), (tb, sj , ∅, {x}), (ta, sk, {x}, ∅)
6 (ta, si, ∅, {x}), (tb, sj , {x}, ∅), (ta, sk, ∅, {x})
7 (ta, si, {x}, ∅), (tb, sj , ∅, {x}), (ta, sk, ∅, {x})
8 (ta, si, ∅, {x}), (tb, sj , ∅, {x}), (ta, sk, ∅, {x})
9 (ta, si, ∅, {x}), (tb, sj , ∅, {x}), (tb, sk, ∅, {y}), (ta, sl, ∅, {y})
10 (ta, si, ∅, {x}), (tb, sj , ∅, {y}), (tb, sk, ∅, {x}), (ta, sl, ∅, {y})
11 (ta, si, ∅, {x}), (tb, sj , ∅, {y}), (ta, sk, ∅, {y}), (tb, sl, ∅, {x})
12 (ta, si, ∅, {x}), (tb, sj , {x}, ∅), (tb, sk, {y}, ∅), (ta, sl, ∅, {y})
13 (ta, si, ∅, {x}), (tb, sj , {y}, ∅), (tb, sk, {x}, ∅), (ta, sl, ∅, {y})
14 (ta, si, {x}, ∅), (tb, sj , ∅, {x}), (tb, sk, ∅, {y}), (ta, sl, {y}, ∅)
15 (ta, si, {x}, ∅), (tb, sj , ∅, {y}), (tb, sk, ∅, {x}), (ta, sl, {y}, ∅)
16 (ta, si, {x}, ∅), (tb, sj , ∅, {y}), (ta, sk, {y}, ∅), (tb, sl, ∅, {x})
17 (ta, si, ∅, {x}), (tb, sj , {y}, ∅), (ta, sk, ∅, {y}), (tb, sl, {x}, ∅)

often correlated to bugs [20], [21]. Park et al., abstract non-

deadlock and univariate concurrency bug defects into 8 differ-

ent memory-access patterns in Falcon [20]. UNICORN [17]

further expands the patterns to 17 kinds to handle multivariate

concurrent defects.

In this work, we adopt the set of 17 memory-access patterns

defined in [17], which are shown in Table I. The second

column of the table shows the memory-access patterns. Each

memory-access pattern is a sequence of at most four steps in

the test execution, which concerns only with two threads and

at most two variables. Each step is a tuple of (t, s, R,W ),
where t is a thread id, s is a bytecode instruction generated

by a statement in the program, R is a set of variables being

read and W is a set of variables being written. For example,

the memory-access pattern with id of 1 in Table I means that

a read access of x by thread ta in statement si is followed by

a write access of x by thread tb in statement sj .

B. Adaptive Random Testing

Adaptive Random Testing (ART) [16], [22], [23] describes

a family of algorithms of generating random test cases for

sequential programs. The idea is based on a fact that the test

cases which can cause the bugs are unevenly distributed in the

input domain. Because of this skewed distribution, bugs may

densely distributed in certain parts of the input domain. Based

on this, there are assumptions that evenly distributed test cases

are more likely to expose failures, i.e., with fewer test cases,

than ordinary testing (where the distributions of test cases are

not explicitly considered), and the efficiency might be higher

if the distribution is taken into consideration. Chen uses F-

measure [16] to realize ART, which represents the expected

number of test cases required to detect the first failure, as the

effectiveness metric.

Fixed Size Candidate Set Algorithm (FSCS) [16] is one

of the adaptive random testing algorithms. FSCS maintains
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Fig. 1. The Motivating Example

Fig. 2. State Diagram of the Motivating Example

two sets of test cases. One set is the set of all executed test

cases, which is denoted by E = {e1, e2, ..., en}. The other

set is the candidate set, denoted by C = {c1, c2, ..., ck}. The

candidate set contains k randomly generated inputs and k
is fixed throughout the testing process. A candidate will be

selected as the next test case if it has the largest distance to

its nearest neighbour in E. The basic idea of FSCS is that

test cases should be as evenly distributed over the entire input

space as possible in order to achieve a small F-measure value.

III. A MOTIVATING EXAMPLE

In this section, we illustrate our Adaptive Randomized

Scheduling (ARS) algorithm with a simple motivating exam-

ple, shown in Figure 1.

This program has one shared variable account, which has

an initial value of 0 (line 14). The local variable temp is added

to make sure that all of the statements in this example are

atomic. The main thread creates two threads in this example,

each of which executes a piece of code accessing the shared

variable account. When statement 9 and line 10 of one thread

are interleaved with statement 9 or 10 by the other thread, the

atomicity of the line 9 and 10 is violated, which leads to an

assertion failure (line 19). This is a typical data race.

In order to explain the entire iterative search process of

ARS, we draw the state diagram of the example program

(Figure 1) in Figure 2. In Figure 2, nodes represent the states of

the program (which include all the shared variable evaluations

and the program counter for each thread of the program). The

labels on the edges represent the transitions caused by the

corresponding thread and statement. A transition is triggered

when an instruction is executed. The target state is decided

based on the evaluation of the variables as well as the next

instruction of each thread to be triggered.

ARS starts with executing a randomly generated schedule

until completion. In this example, we assume that the first trace

found is trace the nodes of which are highlighted in grey in

Figure 2. Note that in Figure 1, one statement can be executed

by multiple threads, we use trtisj to represent a transition which

is the result of statement sj executed by thread ti. We represent

a trace with the sequence of transition labels. For example

the trace highlighted in grey in Figure 2 is represented as

C0 =
〈
trt1s9 , tr

t1
s10 , tr

t2
s9 , tr

t2
s10

〉
. We collect the memory-access

information of trace C0 based on the patterns shown in Table I.

Following the notation used in [17], [20], we add an extra

rule when constructing patterns, i.e., a pattern should not step

over write operations on the same shared variable, since the

write operation will overwrite the value of shared variable.

The patterns of C0 can be expressed as a set PS0, which is

shown as follows:

PS0 = {[(t1, s10, {}, {account}), (t2, s9, {account}, {})],
[(t1, s10, {}, {account}), (t2, s10, {}, {account})]}

(1)

PS0 contains 2 patterns, each of length 2. Recall the defi-

nition of memory-access patterns in Section II-A, the pattern

[(t1, s10, {}, {account}), (t2, s9, {account}, {})] means that

thread 1 writes the shared variable account at statement 10
and then thread 2 reads the value of account at statement 9.

ARS then selectively and adaptively explores the nodes in

the search space in a way which is controlled by distance be-

tween traces as well as the pool size N , which we will describe

in detail in section IV-B. At each node, ARS calculates the

pattern set PS′ of every sequence of transitions which have

been executed, and then compares the numbers of different

elements of set PS0 and PS′ (distance). The “distance” is

defined as the number of different patterns between PS′ and

PS0 (i.e., PS′ \ PS0), and the details of the definition will

be discussed in section IV-B. At each state, the algorithm

selects N farthest nodes (from the current passing traces) and

continues searching from the selected nodes. We set the N
to be 2 in this example (and discuss the selection of N in

detail in Section V). ARS continues exploring adaptively until

it finds an error or the program terminates.

In the example of Figure 2, suppose we have explored the

passed trace C0 and the current passed trace set is Cp = {C0}.
In the first iteration, there are two sub-traces, i.e., 〈trt1s9〉 and

〈trt2s9〉. Since 〈trt1s9〉 and 〈trt2s9〉 do not match any patterns in

Table I, the pattern set of both are {}. Therefore the distance

between 〈trt1s9〉 and Cp, 〈trt2s9〉 and Cp are both 0. ARS records

both of the sub-traces in the queue and proceeds to the

second iteration. In the second iteration, there are 4 sub-traces,

queue = {〈trt1s9 , trt1s10〉, 〈trt1s9 , trt2s9〉, 〈trt2s9 , trt1s9〉, 〈trt2s9 , trt2s10〉}.
These 4 sub-traces also do not match any patterns, and their

distances from Cp are all 0. Since only 2 sub-traces can be
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kept in queue based on N , the algorithm randomly selects 2
sub-traces (from the pool of 6 traces, i.e., the existing 2 traces

in the queue and the 4 newly generated traces), suppose they

are 〈trt1s9 , trt2s9〉 and 〈trt2s9 , trt2s10〉. ARS then adds them in queue
before the next iteration starts.

In the third iteration, we get 3 sub-traces, queue =
{〈trt1s9 , trt2s9 , trt1s10〉, 〈trt1s9 , trt2s9 , trt2s10〉, 〈trt2s9 , trt2s10 , trt1s9〉}.
Trace 〈trt1s9 , trt2s9 , trt1s10〉 has the patterns PS1 =
[(t2, s9, {account}, {}), (t1, s10, {}, {account})].
Trace 〈trt1s9 , trt2s9 , trt2s10〉 has the patterns PS2 =
[(t1, s9, {account}, {}), (t2, s10, {}, {account})].
Trace 〈trt2s9 , trt2s10 , trt1s9〉 has the patterns PS3 =
[(t2, s10, {}, {account}), (t1, s9, {account}, {})]. Note that

pattern [(t1, s10, {}, {account}), (t2, s9, {account}, {})]
and [(t2, s10, {}, {account}), (t1, s9, {account}, {})]
are equivalent. The distances of 〈trt1s9 , trt2s9 , trt1s10〉,〈trt1s9 , trt2s9 , trt2s10〉 and 〈trt2s9 , trt2s10 , trt1s9〉 with Cp are 2,

2, and 1, respectively.

〈trt1s9 , trt2s9 , trt1s10〉 and 〈trt1s9 , trt2s9 , trt2s10〉 have bigger dis-

tances to Cp so we add them in the queue and expand continu-

ously. In the next iteration, the program terminates and we get

2 traces 〈trt1s9 , trt2s9 , trt1s10 , trt2s10〉 and 〈trt1s9 , trt2s9 , trt2s10 , trt1s10〉
(highlighted in red in Figure 2), both of which lead to errors.

The search completes in this example since an error occurs.

If no error occurs in this iteration, the passed traces will be

added to the passed trace set Cp and used to calculate the

distance in the following iterations.

It takes ARS 2 complete execution runs to find the first

bug in the example program with N = 2, and some partial

traces (marked in dotted transitions in Figure 2) are terminated

by the algorithm. This simple example shows how our ARS

algorithm works. Note that in the motivation example, only

one passed trace is explored before the bug is detected. In

reality, there may be more than one passed traces explored

before a bug is detected, in such cases, subtraces which are

maximally different from all of the passed traces are selected.

More experiments are conducted to evaluate the effectiveness

of ARS in section V.

IV. OUR APPROACH

In this section, we describe the Adaptive Randomized

Scheduling (ARS) algorithm in detail. The ARS algorithm

combines the random testing and adaptive random testing to

control thread scheduling adaptively. The aim of ARS is to

detect concurrency bugs more quickly with less efforts.

A. Definition of Distance between Traces

Before introducing the overall algorithm of ARS, we first

describe the distance metric used in ARS. There are existing

approaches [16], [24]–[26] which use the Euclidean distance

to measure distances between test cases. However these ap-

proaches do not consider the effect of different schedul-

ings, and thus cannot find concurrent bugs effectively. ARS

considers the scheduling information of threads by adopting

memory-access patterns [17]. The results of UNICORN [17]

show that memory-access patterns are often correlated to

concurrency bugs. Therefore, in ARS, we are motivated to

define the distance metrics based on memory-access patterns.

The intuition is that the patterns of a failure-inducing trace

should be different (and thus has a large distance) from the

patterns of a successful trace.

Definition 4.1 (Distance between traces):

dist(tracea, traceb)
.
= |Ptracea \ Ptraceb |

In the definition, tracea and traceb are two traces, and their

pattern sets are Ptracea and Ptraceb , respectively. The distance

between the two traces is defined as the difference of their

corresponding pattern sets. According to the definition, the

more different the patterns of two traces, the larger the distance

value.

Let Tr = {tr1, tr2, ..., trn} be a set of traces. We can

formally define the distance between one trace and a trace

set as follows.

Definition 4.2 (Distance between a trace and a trace set):

dist(trace, T r)
.
= min{dist(trace, tri)|tri ∈ Tr}

The distance of trace and a trace set Tr is defined as the

minimum of distances between trace and each element Tri
in Tr. The definition guarantees that if the distance between a

trace trace and a trace set Tr is large, then every trace in the

trace set Tr has a large distance from trace. For the simplicity

of notation, we use the short format min
i

dist(trace, tri)

to represent the equation min{dist(trace, tri)|tri ∈ Tr}
hereafter.

Let C = {c1, c2, ..., cm} be the set of existing passed traces,

and Q = {q1, q2, ..., qn} be the set of current sub-traces, We

give the formal definition of the distance between the two sets

as follows.

Definition 4.3 (Distance between two trace sets):

dist(Q,C)
.
= max{dist(qi, C)|qi ∈ Q}

.
= max

i
min
j
|Pqi \ Pcj |

Intuitively, Definition 4.3 tries to find a trace in Q, which

has the maximum distance with all the traces in the passed

trace set C.

In this work, we propose an effectiveness metric, called P-

measure. It is defined as the number of executions required to

detect the first concurrency bug. More specifically, P-measure

means how many traces the algorithm needs to explore in

order to find the first defect. P-measure is formally defined in

Definition 4.4.

Definition 4.4 (P-measure):

P = |C|+ 1

In Definition 4.4, |C| is the number of passed traces that

ARS has explored when the first defect is detected. Intuitively

speaking, the P-measure reflects the effectiveness of a testing

strategy in terms of the number of complete runs required

to expose the bug. In practice, when a failure is detected,

the testing is normally stopped and debugging will start.
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Algorithm 1: Adaptive Randomized Scheduling Algo-

rithm
1 function heuristicSearch(P,N ):
2 Tpassed ← ∅;
3 trace← execute P randomly;
4 if trace is failed then
5 return {trace}, Tpassed;

6 Tpassed ← Tpassed ∪ {trace};
7 Tfailed ← ∅;
8 while Tfailed = ∅ do
9 Tfailed, Passed←oneIteration(Tpassed, N );

10 Tpassed ← Tpassed ∪ Passed;

11 return Tfailed, Tpassed;
12 function oneIteration(Tpassed, N ):
13 SubT ← execute P for one step;
14 T ← ∅;
15 Queue← empty queue;
16 enQueue(Queue, SubT );
17 while Queue �= ∅ do
18 sort Queue by distance desc;
19 Queue← the first N elements of Queue;
20 subtrace← Queue.dequeue();
21 SubT ← execute subtrace for one step;
22 T ′ ← all of the completed traces in SubT ;
23 T ← T ∪ T ′;
24 enQueue(Queue, SubT \ T );

25 Tpassed ← all of the passed traces in T ;
26 Tfailed ← all of the failed traces in T ;
27 return Tfailed, Tpassed;
28 function distance(trace, Tpassed):
29 Setdistance ← ∅;
30 for t in Tpassed do
31 distance← |patterns(trace) \ patterns(t)|;
32 Setdistance ← Setdistance ∪ {distance};
33 return min(Setdistance);

The testing phase would normally be resumed only after the

detected defect is fixed. Therefore, the P-measure is more

intuitive for debugging tasks in practice than measurements

which focus on the number of bugs that can be found. Our

work targets finding the first bug as soon as possible. However,

ARS is able to detect multiple bugs if it continues with the

detection process.

B. The Adaptive Randomized Scheduling Algorithm

The ARS algorithm is shown in Algorithm 1. ARS assumes

that the inputs of the tested program are already given, and

does not change during the execution of algorithm. The task

of ARS is to find the buggy schedules for the given inputs.

There are three functions in Algorithm 1. The heuristic-
Search function takes a program (P ) and a given threshold

N (which will be described in detail shortly) as inputs.

heuristicSearch calls function oneIteration in every iteration.

The oneIteration function takes the set Tpassed, which contains

all of the traces the algorithm has already explored, and the

threshold N as inputs. The distance function calculates the

distance between each sub-trace trace and passed trace set

Tpassed, as defined in Definition 4.2.

The heuristicSearch function controls the work flow of the

ARS algorithm. It first executes the program P (on a given

set of inputs) randomly (line 3). The algorithm stops and

returns the failed trace if we encounter a failed trace during

executions (line 4 − 5). Otherwise, a passed trace trace is

found and then is added to the passed trace set Tpassed (line

6). heuristicSearch starts the iteration step (by calling the

oneIteration function) until a failed trace is found (line 8−10).

The oneIteration function from line 12 to line 27 conducts

a search, which collects one or more traces. oneIteration takes

the set of passed traces Tpassed and explores the state space of

program P until it finds one or more completed traces T . The

passed traces in completed trace set T are labeled Passed and

added to Tpassed (line 25). The failed trace, if encountered,

are added to Tfailed. oneIteration first executes P for one

step (line 13), which explores all transitions available in the

initial state of P and records them in a sub-trace set SubT . A

sub-trace is a sequential list of states, the last state of a sub-

trace is not required to be a final state. Then SubT is added

into a priority queue Queue (line 16). In the while loop from

line 17 to line 24, ARS first sorts the queue based on the

distance information of each sub-trace (calculated based on

function distance from line 28 − 33) and only keeps the first

N sub-traces that has the largest distances (line 18−19). Then

ARS dequeues a sub-trace subtrace from the Queue (line 20)

and continues exploring subtrace one step forward (line 21)

by running P following the path recorded in subtrace. The

exploration stops when the final state of a subtrace is reached.

The result of exploration is a set of sub-traces SubT . Then

all (completed) sub-traces in SubT , i.e., traces that reach the

final state, are added to T (line 22− 23), the others are added

to Queue (line 24). The while loop continues until the Queue
becomes empty. The set T contains all passed traces Tpassed

and failed traces Tfailed explored in the current iteration when

ARS finishes.

The distance function from line 28 to line 33 is an imple-

mentation of Definition 4.2, which is used to calculate the

distance between a trace trace and a set of passed traces

Tpassed. This function is not called explicitly in the algorithm,

but rather is called when Queue is sorted at line 18. Before

calculating the distance, it first matches the patterns of trace
(represented by patterns(trace)) and the patterns of every

element si in Tpassed (represented by patterns(si)) based on

the generic memory-access patterns shown in Table I. Then

the distance between trace and each element si in Tpassed

can be calculated based on Definition 4.1 (line 31). All of

the distances are added in Setdistance (line 32). Finally the

minimum number of Setdistance, i.e., the distance between

trace and Tpassed, is returned.

A strict scheduling technique is required for this algorithm.

For example, at line 21, the tested program P needs to be

executed strictly following the order of subtrace first, and

then extends one more state to produce several new sub-traces

in SubT . This means the implementation of ARS algorithm

should have the ability of reproducing a certain trace or

recording and restoring program execution state. The detailed

implementation is described in the next section.

C. Implementation

Our implementation is in Java and leverages on Java

Pathfinder (JPF) [27], a model checker developed by NASA

with the aim of verifying Java programs. JPF is capable
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of model-checking concurrent programs and it has build-in

state space reduction techniques, like partial order reduction.

JPF provides excellent supports for concurrent programs. It

provides a build-in scheduler which allows exploring differ-

ent scheduling combinations, and also supports user-defined

scheduling policies. JPF can identify states in the program

from where executions can diverge, then explore them system-

atically. That is to say, JPF explores all execution paths of a

program. Typical variances supported are different scheduling

traces or random values, meanwhile, JPF allows users to

introduce their own type of inputs or state machine events. JPF

records the complete execution history, including fine grained

bytecode instructions, of a trace leading to defects.
In the implementation of ARS, the most important task

is to control the scheduling of threads. With JPF, we can

control thread scheduling and get the runtime information of

the Java program. In fact, JPF traverses all the states of a

program in a top-down manner. At run time, JPF generates

scheduling points for possible thread switching positions. At

each scheduling point, it generates one option for each target

that can be switched. By default, it chooses the first one each

time. In our implementation, we choose the option which has

the largest distance to the previously explored traces.

V. EMPIRICAL EVALUATIONS

A. Experiment Setup
The experiments are conducted on a computer with a 2-

core, 3.20GHz Intel i5 CPU and 8GB physical memory. The

operating system is Windows 10 and the java version is JDK

1.8. The heap space used to run the experiments is set to 2GB.
We evaluate the ARS algorithm on a variety of multi-

threaded Java programs collected from recent related publica-

tions [12]. These programs are widely adopted as benchmarks

by research work on concurrency defect detection, location and

fixing.1 The details of the benchmark programs are shown in

column 1−4 of Table II. The first column is the program name.

The second column reports the total lines of code, column 3
shows the number of threads in each program and column

4 is the type of concurrency defects exist in the program.

Each program has at least one known error that causes runtime

exceptions under certain thread scheduling.
We ran each of the benchmark programs 100 times with

ARS and the simple randomized algorithm (SR), which is

an implementation of randomized scheduling method [15].

We also compare ARS with maximal causality reduc-

tion (MCR) [12], which is the state-of-the-art for stateless

model checking and can be used to find concurrent bugs.

In [12], it has been shown that MCR is much more effective

than alternative approaches like advanced partial order reduc-

tion and approaches based on bounded context switch. Since

MCR utilizes constraint solving, which is time-consuming, we

ran each program with MCR for 10 times. In each run, the

program stops when the first error is found, and the number

of executions is recorded.

1The programs we choose as our benchmark are constrained to programs
which JPF can support.

Fig. 3. Evaluation of P-measure with different N values

Fig. 4. Evaluation of time with different N values

B. Research Questions

By conducting the experiment evaluations, we aim to answer

the following three research questions.

RQ1: How does threshold N impact the defects detection
effectiveness and efficiency of ARS? In our approach, the

threshold N controls the searching breadth of ARS algorithm.

Theoretically, the larger N is, the slower the search is for each

run, but the higher probability of finding bugs in each run. We

want to explore what is a good N that can balance the two

aspects, i.e., to find the first bug with fewer runs and less time.

To answer this research question, we set the value of N from

1 to 6 and report the average P-measure as well as execution

time for different values of N .

RQ2: How effective is ARS in detecting concurrent
defects? The effectiveness of ARS in detecting concurrent

defects is the key concern of our approach. For this research

question, we measure if ARS can detect the concurrency

bugs in the benchmark programs effectively, i.e., whether the

concurrency bugs can always be detected in an acceptable

number of iterations. We also compare ARS with the simple

random search (SR) algorithm as well as the maximal causality

reduction (MCR) algorithm with the same experiment settings.

RQ3: How efficient is ARS in detecting concurrent defects?
As the third research question, we want to measure whether

ARS is able to detect concurrency bugs efficiently, i.e., always

detect bugs in an acceptable amount of time. We also compare

ARS with SR and MCR with the same experiment settings.
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TABLE II
RESULTS COMPARED WITH SR AND MCR

Program LoC #Thrd Type
# Avg P-measure # Avg Time (s)

ARS SR MCR
ARS vs. SR ARS vs. MCR

ARS SR MCR
p δ p δ

Account 373 10 atomicity 2.00 2.00 9.2 1.000 0.00 0.001 -0.84 55.63 3.76 1660.60
Airline 136 20 order 2.60 18.10 8.0 0.001 -1.00 0.000 -1.00 1.43 5.92 187.53
AlarmClock 351 8 race 2.34 3.58 - 0.003 -0.87 0.000 -1.00 8.66 1.49 -
AllocationVector 348 2 atomicity 1.41 1.02 4.0 0.796 -0.08 0.001 -0.80 3.31 0.87 1.38
AtomError 67 2 race 1.38 1.44 1.0 0.895 0.06 0.001 1.00 0.35 0.43 0.15
CheckField 44 2 atomicity 4.01 3.72 3.0 0.671 0.19 0.001 0.80 0.39 1.14 0.69
Consisitency 35 3 atomicity 4.51 5.51 2.0 0.391 -0.33 0.000 1.00 0.39 1.67 0.49
Critical 70 2 race 2.39 3.35 2.0 0.023 -0.68 0.012 0.60 0.35 1.03 0.26
Datarace 118 2 atomicity 1.59 2.10 7.0 0.019 -0.71 0.000 -1.00 0.34 0.65 16.24
Even 63 4 order 1.19 1.23 2.0 0.774 -0.14 0.000 -1.00 0.32 0.38 1.86
Lang 2444 2 atomicity 2.73 3.60 8.0 0.026 -0.66 0.000 -1.00 0.37 1.10 3.26
LinkedList 299 2 atomicity 1.76 1.68 6.9 0.895 0.07 0.000 -1.00 0.42 0.54 11.28
MergeSort 399 2 race 1.70 1.67 2.0 0.671 0.22 0.002 -0.70 3.44 1.11 426.21
ProducerConsumer 194 7 atomicity 2.30 3.39 - 0.007 -0.81 0.000 -1.00 48.58 4.20 -
Reorder 92 4 atomicity 8.16 58.77 4.0 0.001 -1.00 0.000 1.00 0.51 22.19 0.74
SimpleTest 47 2 atomicity 2.83 5.32 4.9 0.001 -0.95 0.000 -1.00 0.35 1.63 0.64
TwoStage 140 2 race 9.99 23.65 2.0 0.001 -0.96 0.000 1.00 0.51 7.33 0.75
Log4j 18799 4 order 3.63 7.15 38.0 0.001 -1.00 0.000 -1.00 22.92 7.15 24.79
WrongLock2 36 5 race 2.60 2.93 - 0.671 -0.20 0.000 -1.00 0.35 0.90 -
Bakery 111 2 atomicity 18.93 47.93 - 0.001 -0.96 0.000 -1.00 0.59 6.88 -
Dekker 100 2 atomicity 32.05 89.74 - 0.000 -1.00 0.000 -1.00 0.35 9.05 -
Lamport 150 2 atomicity 10.18 29.64 - 0.000 -1.00 0.000 -1.00 0.22 2.64 -
Peterson 77 2 atomicity 10.38 36.58 8.00 0.000 -1.00 0.000 1.00 0.20 3.73 4.75
Pipeline 119 7 race 6.14 24.81 - 0.000 -1.00 0.000 -1.00 0.47 2.47 -
Readerswriters 598 3 race 2.42 6.07 10.00 0.000 -1.00 0.000 -1.00 0.23 0.76 66.02
CyclicDemo 54 4 atomicity 2.14 2.17 8.0 0.852 -0.09 0.000 -1.00 0.16 0.20 5.53
TestArray 46 2 atomicity 3.95 7.14 - 0.003 -0.88 0.000 -1.00 0.17 0.77 -

C. Answer to Research Questions

RQ1: How does threshold N impact the defects detection
effectiveness and efficiency of ARS?

To evaluate the effect N has on the effectiveness and

efficiency of detecting defects, we record the average of P-

measure as well as execution time for each program with

different values of N ∈ {1, 2, 3, 4, 5, 6}. Figure 3 and Fig-

ure 4 summarize the results of the experiments. Results of

P-measure on different N values are shown in Figure 3 and

the results of time are shown in Figure 4. From the results of

Figure 3, we can observe the threshold N has some impact

on the defect detection efficiency of ARS. For some programs

(e.g., AlarmClock and Bakery), there is an obvious trend of P-

measure decreasing with the increase of N . However, for some

other programs, such as Account and MergeSort, there is no

obvious trend. N can be viewed as controlling the searching

width, therefore, the results indicate that there are certain

traces which have larger distances from the successful traces

and thus they are always selected by ARS to explore. This

reflects that memory-access pattern can act as a good distance

metric to guide the state space exploration.

The effect of N on the execution time is shown in Figure 4.

Intuitively, the time value is affected by multiple factors. A

larger N number means more options for searching in each

iteration. Therefore bigger N is likely to cause the decrease of

P-measure values. On the other hand, the larger N is, the more

options need to be maintained for expanding, which is time

consuming. We can observe that generally speaking, execution

time does not show a growing trend with the increase of N .

For some programs (e.g., Account and MergeSort), there are

many branches (sub-traces) which have the same distance with

existing passed traces, and ARS behaves similarly with the

breadth-first search. As a result, ARS explores more branches

with the increase of N , and the execution time increases

with the increase of N. For some other programs (e.g., Lang

and SimpleTest), there exists one branch that has a larger

distance (with existing passed traces) than other branches,

and ARS behaves similar to depth-first search. Therefore, the

exploration is guided to follow that branch (which has the

largest distance value) and the buffer queue length N does not

have much impact in this case. As a result, the time required

does not show an increasing trend with the value of N .

With a comprehensive consideration on the results of P-

measure values and the execution time, we decide to set N to

5, which gives us a good execution time, as well as a small

P-measure value (which can also be interpreted as stability

of effectiveness in detecting bugs, especially in those hard-

to-detect bugs) in detecting defects. In all of the following

evaluations, the value of N is set to 5.

RQ2: How effective is ARS in detecting concurrent de-
fects?

Table II shows the comparative experiments’ results be-

tween ARS, SR and MCR. All the results are obtained with N
set to 5 for ARS. We conduct the comparisons in two aspects,

i.e., the average P-measure and the average time used. The

values for ARS and SR are obtained with an average of 100
executions and MCR an average of 10 executions (as MCR
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takes long time to finish one execution). Columns 5−11 show

the average P-measure results and columns 12− 14 show the

average execution time used to detect the first bug.

In our evaluation, we use P-measure to measure the effec-

tiveness of bug detection. Recall that P-measure is defined as

the number of passed traces explored when the bug is detected.

It can also be interpreted as the number of execution runs used.

P-measure can be used to indicate the stability of effectiveness

of the defect detection method. The intuition behind this metric

is that we want to evaluate whether a bug detection method

can consistently expose bugs in various different programs,

especially when the bug is hard to detect. To check whether

the results of ARS have significant differences comparing to

the other two methods, we adopt hypothesis testing to test the

significance of results between ARS, SR and MCR in terms

of P-measure.

We conduct Wilconxon signed-rank test [28] on the results

of the experiment, and we use Bonferroni correction [29]

to correct P-value. Wilconxon signed-rank test is a non-

parametric hypothesis testing method, which is used to test

the null hypothesis that the median difference (of paired data)

is equal to zero. The confidence is set to 0.05, a p-value

smaller than 0.05 means rejecting the null hypothesis, i.e.,

the median difference is equal to 0. If the value is greater

than 0.05, then the null hypothesis is accepted, which means

these two datasets have no difference. We also use Cliff’s

delta [30] (colunm 9 and 11 in Table II), which is an effect size

measurement to compliment hypothesis testing and provide the

magnitude of differences between observations from different

datasets. The value interval of δ is [−1, 1], and the absolute

value of δ represents the significance of differences. The value

of δ greater than 0.474 indicates higher effectiveness, i.e.,

larger magnitude on the significance. smaller δ values indicates

lower effectiveness.

Columns 2 − 4 in Table II provide the average P-measure

of ARS, SR and MCR, respectively. ARS and SR manage to

detect the defects in all programs in a few iterations, whereas

there are three cases that MCR fails to find the defects in the

given time limit (1 hour). We also analyse the significance

of the results which are shown in columns 5 − 8. The p
values in column 5 and 7 are the results of Wilconxon signed-

rank test. The p-value smaller than 0.05 (highlighted in bold

font) indicates a significant difference between the P-measure

of different methods. The results of Cliff’s Delta is shown

is column 9 and 11, which can measure the magnitude of

difference according to the effectiveness levels. We highlight

the value of δ is the effectiveness level is “large”, i.e., greater

than 0.474. In particular, δ is highlighted in green if ARS is

significantly better, and in red if it is the opposite.

The Wilconxon signed-rank test results show that ARS has

significantly better performance than SR (on P-measure) on 17
programs (as highlighted in bold in the 5th column) and there

is no significant difference on the other 10 programs. As for

Cliff’s Delta there are 17 programs that ARS performs better

with effective level of large, 1 program that ARS performs

better with effective level of medium, 1 program that ARS

performs better with effective level of small, 2 programs that

SR performs better with effective level of small, and the

effectiveness level is negligible for other 6 programs. From

the results we can conclude that ARS performs significantly

better than SR in most of the benchmark programs, and ARS

is more stable in exposing bugs than SR for those programs

that has hard-to-detect bugs, such as Reorder, where ARS uses

only one seventh iterations of that of SR.

In general, ARS also shows better performance in P-

measure compared to MCR. In our experiment, the perfor-

mances of ARS and MCR have significant difference on all

27 programs in Wilconxon signed-rank test, and all programs

have effectiveness level of large in Cliff’s Delta. There are 20
out of 27 cases where ARS outperforms MCR in P-measure,

and MCR performs better on the other 7 programs. MCR

explores traces by finding new values of shared variables in a

(relatively) fixed order. For these 7 programs, MCR performs

better because bugs expose when exploring the first few new

values. From the experiment results, we can observe that, ARS

is effective in detecting concurrency bugs, and it performs

more consistently than SR and MCR.

To further zoom into the programs that ARS performs

well, we provide some hints on the characters of programs

that ARS shows good performance. By further analyzing the

tested programs we can conclude that: (1) ARS is good at

detecting the bugs which has rare or hard-to-trigger conditions.

For instance the Reorder, Bakery and Dekker program in our

benchmark. Comparing to all of possible traces in their state

space, the traces that can trigger the bugs are rare. This kind

of bugs are difficult to expose using randomized scheduling

since the buggy traces are not evenly distributed in the space.

However, ARS is good at exposing this kind of bug guided

by our distance metric. (2) ARS is good at programs which

have traces distinguishable by memory-access patterns. There

are some programs in our benchmark such as Airline and

log4j that falls in this category. For this kind of programs,

the traces that can expose bugs contain bug-leading memory-

access patterns which are missing in traces that do not expose.

This is consistent with the main idea of ARS, which is to guide

the search by the distance based on memory-access patterns.

RQ3: How efficient is ARS in detecting concurrent defects?
Columns 8 − 11 in Table II report the comparison results

on time. We can observe that ARS performs better than

SR in 21 programs and worse in 6 programs. ARS has

longer execution time on Account, ProducerConsumer and

Log4j. These programs access shared variables frequently,

which causes significant overhead for monitoring. Moreover,

the buggy traces occur frequently in the search space, i.e.,

the buggy scheduling is easy to produce, and SR can detect

them easily through random sampling. Therefore, for those

3 programs, the monitoring overhead of ARS dominates the

total execution time. ARS performs better in 25 programs

and comparable or worse in 2 programs compared to MCR.

Note that ARS manages to detect bugs of 20 programs in

less than 1 second. Comparatively, MCR takes a longer time
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(2 up to 500 times longer than ARS) to detect bugs in

general, and especially for some programs (e.g., 1, 660 seconds

for Account, 187 seconds for Airline and 426 seconds for

MergeSort). MCR also fails to detect bugs of some programs

(e.g., AlarmClock, ProducerConsumer and WrongLock2) in

the time limit (1 hours) we set. From the table we can

conclude that ARS is relatively more effective and stable in

detecting concurrency bugs, while both SR and MCR show

long execution times in some of the programs and the variance

in execution time is large.

From the experiment results, we can conclude that ARS is

in general more effective, efficient and stable than both SR

and MCR in detecting concurrency bugs.

VI. THREATS TO VALIDITY

In this section, we discuss the threats to validity of our work

and provide potential mitigation plans.

Bias of benchmarks A key external threat to validity is that

it is hard to obtain benchmarks that are representative of the

multi-threaded Java programs in practice. This is a classical

issue with concurrency program evaluation. In our work, we

collect benchmarks from existing work on concurrency bug

detection and fixing, with the hope that our evaluation results

and comparison with other works are fair.

Limitations of framework In our approach, we utilize Java

Path Finder (JPF) [27] for scheduling control. Due to the limi-

tations of JPF, some large-scale programs can not be executed.

The current implementation is a proof-of-concept implemen-

tation and JPF is chosen due to its flexible scheduling control

interface. We can potentially implement our approach in a

light-weight framework such as Soot [31] and ASM [32].

Comparison with Existing Approaches In our evaluation,

the simple randomized algorithm (SR) and maximal causality

reduction (MCR) are chosen as the baseline comparison al-

gorithms for concurrency bug detection on Java. We do not

conduct a thorough comparison with all existing concurrency

bug detection algorithms [10], [13], [14]. However, SR and

MCR are two most representative algorithms for concurrency

bug detection on Java. MCR has been compared with various

existing concurrency bug detection methods [10], [13] and

shown a better performance. Therefore, we only pick SR and

MCR to compare with.

Internal threats There are also some internal threats to valid-

ity, i.e., threats from our algorithm and parameter selection,

that could affect the evaluation results. For example, the

threshold N may affect the performance of ARS. To mitigate

such effects, we conduct an experiment with the threshold N
(Figure 3 and Figure 4) and choose the N value with the best

performance. The experimental results may also be affected

by the initial success trace. According to the design of ARS

algorithm, the greater number of different patterns, the more

likely the trace is chosen. ARS expands the set of passed traces

at the end of each iteration by involving the newly observed

passed trace, and this may partially mitigate the threats.

VII. RELATED WORK

Concurrency bug detection There have been a large number

of works on concurrency bug detection [1], [4], [8], [33]–[36].

Researches on concurrency bug detection usually concentrate

on three problems, i.e., (1) how to improve the efficiency of

the detection; (2) how to improve the effectiveness of the

detection; and (3) how to reduce false positives. The happens-

before [33], lockset algorithms [1], [35] and many of the exten-

sions [4], [8] have been proposed for concurrency bug detec-

tion. Happens-before analysis and lockset algorithm are widely

used to detect bugs of concurrent programs. RaceChecker [33]

is a data race detector. It uses happens-before relation to prune

the infeasible races before potential races are required to be

verified. The lockset algorithm is then being refined to re-

duce overhead, eliminate false positives and solve some other

problems [1], [35]. Some methods [37]–[39] combine lockset

algorithm with happens-before to detect multithreaded bugs.

RaceTrack [37] uses happens-before technique to analyze

threads access to shared memory, and lockset is used when a

corresponding location is found to be accessed concurrently by

multiple threads. However, since static analysis methods don’t

use runtime information of concurrent programs, lockset and

happen-before analysis methods are difficult to reduce false

positive comparing to dynamic methods. Many innovative

approaches, such as training [40] and interleaving testing [3],

[5], [41], have been proposed to address the false positive

problem in concurrency bug detection.

Random testing (or fuzz testing) is widely used to test

sequential programs. Random testing is in general efficient

in finding common bugs. In concurrent bug detection, random

testing is always used to control thread scheduling. PCT [15]

is a randomized scheduling method, it uses a disciplined

schedule-randomization technique to provide efficient proba-

bilistic guarantees of finding bugs. Other method [2], [3], [14]

do some optimization on the basis of the randomized testing

algorithm. Although random testing has been quite successful

in finding bugs, it suffers from the problem of redundant

exploration, i.e., the same (non-buggy) trace may be executed

multiple times, which makes it hard to find bugs that hide

in vague schedules. ARS is aimed to solve this problem, it

introduces the concept of adaptive on simple random testing.

There won’t be a trace that executed repeatedly and it can

detect defect more efficiently.

Adaptive random testing. ART is a slight modification to

the random test strategy, using the information of test case

selected before to guide the test cases to be selected later.

So that the test cases are distributed as evenly as possible

throughout the input space. The aim of ART is to improve

the capability of detecting errors significantly. Recently, a lot

of ART algorithms have been proposed. These algorithms

can be divided into three categories : (1) distance-based ART

methods such as Fixed Size Candidate Set (FSCS) [16]; (2)

segmentation-based ART algorithms such as Dynamic Parti-
tioning (DP) [22]; (3) Exclusion-based ART methods such as
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Restricted Random Testing (RRT) [23]. There are also some

optimization algorithm using mirror partitioning [24], genetic

algorithm [26], [42], etc. However, all the proposed methods

are all used in sequential programs. ARS is inspired by the

idea of adaptive random testing. To the best of our knowledge,

this is the first time that the adaptiveness is introduced into

concurrency bug detection.

VIII. CONCLUSION

In this work, we propose an adaptive random scheduling

algorithm inspired by the idea of FSCS [16]. We empirically

demonstrate the efficiency and effectiveness of the algorithm

in concurrency bugs detection. The evaluation results also

show that our algorithm performs more stable in terms of the

effectiveness in concurrent bug detection than state-of-the-art

methods such as simple randomized algorithm and maximal

causality reduction algorithms.
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